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In problems associated with aerodynamic heating, the process of heat propa-
gatlon in a solid is usually considered one-dimensional (more exactly, as
quasl-one-dimensional) by assuming a parametric dependence on the coordinate
along the heated surface. However, measurements of thermal {luxes [1] show
that the influence of longitudinal heat conduction can be substantial even
for comparatively short heating times. In this connection it 1s expedient
to clarify and estimate the deflection of the temperature distribution from
the one-~dimensional in certain simple problems taking account of the noh-
uniform surface heating. A model problem of body heating in the neighbor-
hood of a critical point and the problem of body heating behind a thermal
front moving along its surface are considered below.

1. Aerodynamic heating of & body in the nelghborhood of & forward criti-
cal point. Let us consider the following problem (plane v = 1 and axisym-
metric v = 2) on the heating of a semi-infinite body y > O which has the
same temperature T _ everywhere at the initial instant with a given normal
derivative on the boundary
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Problem (1.1) may be considered as a model to describe the process of
heat propagation at the nose sectlon of a blunt body subjected to aerodynamic
heating. Let us transform toc nondimensional quantities by means of Formulas
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Problem (1.1) is formulated in nondimensional guantities an
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For simplicity of writing, the primes are omitted below. Hence, the so-
lution of problem (1.2) depends on the two nondimensional parameters o and
g , and, because of linearity of the problem, 1t can be written

6 =0 ¢, r, Y5, B) =91(tl Yy ¢)+ez(t,y§ B)
For the functlion 8, satisfying the boundary condltion
30, /0y =—R for y—0,

we have
dt
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Let us seek the function 9, as the Fourier integral
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or as the Fourler-Bessel integral

[¢ <]
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Here J,{x) 1s the zero order Bessel function of the first kind. Then
we willl have the following problem for @&
a0 %0
a - oyt s*8
(1.3)
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Problem (1.3) may be solved by an operational method. We obtain for
¢t s y) t
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Using the formulas of the inverse Fourler and Fourler-Bessel transforms

for the function exp(— %.s?) (see [2] pp.216 and 585) we find @,
t

g = al ¥ r? dv (1.4)
g.=o\exp|— - — .
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Hence, the problem (1.1) is solved. Let us compare the obtained solution
with the quasi-one-dimensional solution. The latter has the form

t

6= B+ ae"")§ exp ( _¥ ) dv_ _ B+ ae™ 2 Viierfc 5 ;;; (1.5)

IR
Here (see [3])

[s o]
ierfc z = S eric zdx
x

As the measure of the deviation of the quasi-one-dimensional solutlion
from the exact solution, let us take the relative difference in temperatures
given by both solutions at the point r =y =0 . The difference thus de-
termined we shall denote by A8, and it equals
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AD, = 68, (£,0,00—8 (50,0 _ «a 1 § 1 __d drt
B, (, 0, 0) o+ B 2V£0 G+ 1V

For definiteness, let + = 2 . Then

o tan 2V L
A8y =73 (1m YT ) (1.6)
For small ¢ the quantity A6, grows linearly with time
o 4
AB, = m*g—t (1.7)

In order that the obtained result might be applied to steady problems,
let us express A8y 1n terms of the nondimenslonal characteristic thilckness
& of the thermal layer. We define § as the distance from the surface at
which the temperature gradient, computed by the quasi-one-dimensional so-
lution, is 0.5% of the same quantity on the surface. Since

%?!—‘-— = — B+ ae™ erle 2 f/f

then & = 4/t . Hence, we obtain from (1.6}
o 2 . 8
s0. =3 (15 = 7) 8
For small & .
a &
AD, = m 1 (1.9)

From formulas cbtained it follows that the deviation of the temperature
distribution from the one-dimensional will be noticeable if the thickness
of the thermal layer exceeds the characteristic length of the change in the
heat flux at the boundary.

2, Heating of a wall behind a moving thermal front was consldered by
Tirskii [4] in the steady-state problem (in a moving coordinate system) of
heating of a half-space behind a moving compression shock by neglecting thc
flowing of the heat along the body surface because of heat conductlon gquasi-
one-dimensional sclution). The same problem, not absolutely steady-state,
is considered below, however, only for a solid without the assumption of
gquasi-one-dimensionality of the process. It is assumed that the heat flux
on the surface of the body is known,

Let a thermal front move with velocity V along the surface of a body,
the half-space y > O , in the positive x direction. At time ¢ = 0 the
front is in the x = O plane. Let us assume that the body 1s separated
into two quadrants of the space by thermal insulation along the x = 0 planc.
Let us determine the heat propagation process in the x > 0 , y > O domain.

In the nondimensional variables introduced in the came manner as in the
preceding Section, the problem 1is formulated thus

90 0% | %0

—_— B e e == xo
at zt at t , 0
(2.4}
a9 a0 —a(zr, 1)y, <Rt (R— V)
2=0, =0 ¥y=0 FH=1 o ' >R =%
Let us note that the nondlmensional parameter # is analogous to thg'M?
Reynolds number in boundary layer theory singe [#) =77 ana fg°] - 77

Let us also note that the volution frum [4] for a solid lis the nolutivn of
boundary-layer type ln peeclsely thls parametcr,
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Let us construct the Green's function of the formulated problem. If the

solution U(x,y,a; £) satisfying the initial condition, the heat insulation
conditlon aad the condition at y =0

W _[—1, z<E, >0
oy { 0, 2>%,t>0

is found, then 23%0/323¢t yields the influence function of a point heat
source belng evolved at time ¢ = 0 at the point x = € ; this means the
Green's function 1s representable as

& sy Ys 82— T,
G,y t;8,7) = Ul gE;t % &) (2.2)

Let us seek the function [{x,y,t; £) as a Fourler cosine integral in x

——
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To determine @(&,y,t; §) we have problem
U U ou 2 sin Es
_at""_‘%y"z““*’”? t=0, U=0 y=0, = 5

which can be solved by an operational method. As a result, we obtain

Wis,y, 58 _ 2 sinfs 1 a gt
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Differentiating (2.3) with respect to £ and using the Poisson integral
[2], we find the Green's function (2.2)

¢leyne =gy ow [~ i ([~ e=p )+

Now, on the basis of the principle of addition of effects due to elementa~
ry perturbations, the sclution of problem (2.1) can be written as the integral
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Let us use the obtained results to estlmate the accuracy of the quasi-one-
dimensional solution. If, in conformity with [4], af{x,t} 1is taken as

VR
VaRi— z
then we obtaln from the quasi-one-dimensional solution (620 /92® = 0) that the
surface temperature behind the shock equals one and ahead of the shock the
temperature fleld remains unperturbed. (The presence of a temperature front
is associated with the fact that the equation degenerates from an elllptlc

into a parabolic upon discarding 23°6/3x®). Let us now examine what (2.5)
ylelds for the surface temperature for a chosen a(x,t)
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In order to compare the result with the quasi-one-dimensional solution,
i1t 1s necessary to pass to the limit as ¢ - « in (2.7) and to investigate
the behavior of the integral in the neighborhood of x = Rt . Under these
conditions the first exponential in the integrand of (2.7) may be discarded.
We then obtain

t Rt
VR 1 (zx—E)2] dEar
0(1,0,t)=?n,7§g t—"__—,?exp[—4(t_1)]vﬁ-“—_—_—a (28)
0

Let us make an asymptotic estimate of the integral (2.8) for large &
For R 3 1 the triangular domain of integration on the (§,r) plane differs
slightly from the sector of a circle with center at the point (Rt,t). Taking
this fact into account, let us transform to polar coordinates with center
at the point (Rt,t). Let » be the distance from an arbitrary point (g,7)
to the center (R¢,t) and let ¢/F be the polar angle measured clockwise
from the line 71 = ¢t . Henceforth, the components of order #£~% and higher
will be neglected in comparison with unity. With the accuracy used, the
formulas of the transformation to the new variable of intergration are
t—r:r—g—, Rt—¢ =r (2.9)
As t - » , to the accuracy of quantities of order #F~%, we will have
for the surface temperature
— 1 oo
VR do (r— Mt R ar
2n'0<plf1—cp0 Qr r
The integral (2.10) 1s evaluated directly.
Let us integrate first with respect to 7 . Let us put

A =Rt — =z (2.10)

8o (A) =

1)
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Then, according to [5] (p.323), we obtain
VES [ —MR1da VAR (RM T o
Vi Voo | - g ] = i e (55) | esp[ = — ool -
0 _

VAR R\ (2m\* _ Ve *>0)
b () (%) =1 avs

an'h ) 8 a1V @ exp (RA /¢) <0
After integration with respect to « we find 8,(x)

M =1 (>0, 8 (A) = erfc Y —AR @ <0
Hence, as in the quasi-one-dimensional solutlion, the surface temperature
behind the shock is unity. The perturbation zone ahead of the shock has an
extent of order 1/R
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