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In problems associated with aerodynamic heating, the process of heat propa- 
gation in a solid is usually considered one-dimensional (more exactly, as 
quasi-one-dimensional) by assuming a parametric dependence on the coordinate 
along the heated surface. However, measurements of thermal fluxes [l] show 
that the influence of longitudinal heat conduction can be substantial even 
for comparatively short heating times. In this connection it is expedient 
to clarify and estimate the deflectlon of the temperature distribution from 
the one-dimensional in certain simpie problems taking account of the noh- 
uniform surface heating. A model problem of body heating in the neighbor- 
hood of a critical point and the problem of body heating behind a thermal 
front moving along its surface are considered below. 

1. A~rodynamlc hertlng of & body in the neighborhood of a 
crl point. Let us consider the following problem (plane v = 
metric v = 2) on the heating of a semi-infinite body y > 0 
same temperature 2' everywhere at the initial instant with a 
derivative on the b&ndary 
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may be considered as a model to describe the process of 
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For simplicity of writing, the primes are omitted below. Hence, the so- 
lution of problem (1.2) depends on the two nondimensional parameters a and 
@ , and, because of linearity of the problem, it can be written 

8 =O (t,r,y;a,p)=81(t,r,~;a)~6,(t,y; 8) 

For the function O2 satisfying the boundary condition 

&3,/8~ = - fi for y-, 0, 

we have 

~~(t.~:P)=P~exp(-$-)+- 

0 
Let us seek the function ~3~ as the Fourier integral 

-00 

8,(t, r, Y; a) = 
2 

Ifs 
7 6 (t, s, y) cos sr ds for V = 1 

0 

or as the Fourier-Bessel integral 

81 (t, r, y; a) = f e 0, 8, Y) J,(m) NJ.3 for V=2 

0 

Here J,(X) is the zero order Bessel function of the first kind. Then 
we will have the following problem for 6 : 

. , 

t = 0, 6 = 0; y=o, J%f.m~ ay (V2)” aexp - f ( 1 
Problem (1.3) may be solved by an operational method. We obtain for 

6 0, 8, Y) 
6 (t, 9, y) = P 

(P)’ 
exp( -$){exp( _ @ca*+& 

0 
Using the formulas of the inverse Fourier and Fourier-Bessel transforms 

for the function exp(- ksa) (see [2] pp.216 and 585) we find e1 
t 

) 
dr 

iI&= (1.4) 

0 
I/m (47 + 1)” 

Hence, the problem (1.1) is solved. Let us compare the obtained solution 
with the quasi-one-dimensional solution. The latter has the form 

0, = (P + are? exp S ( - -$) --J$& = (fi + ctt~-~‘) 2 I/tierfc --& (1.5) 

0 

Here (see [3]) 
03 

ierfc z = 
s 

erfc xdx 

As the measure of the deviation of the quasi-one-dimenslonal solution 
from the exact solution, let us take the relative difference In temperatures 
given by both solutions at the point r = y = 0 . The difference thus de- 
termined we shall denote by Ae, and it equals 
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t 
A(T)* = 6, (t, 0, 0) - 0 (t, 0, 0) _ --- a 1 1 dz 

@iI @l 0, 0) a+P 2Jft 
S[ 

(42+1)“~” - I, I/t 1 
0 

For definiteness, let v = 2 . Then 

For small t the quantity 68, grows linearly with time 

(1.6) 

In order that the obtained result might be applied to steady problems, 
let us express Ae, in terms of the nondimensional characteristic thickness 
6 of the thermal layer: We define 6 as the distance from the surface at 
which the temperature gradient, computed by the quasi-one-dimensional so- 
lution, is 0.5% of the same quantity on the surface. Since 

$f = - (p + ad+‘) erfc * 

then 6 = 4/t . Hence, we obtain from (1.6) 

cl -- Ae* - a + p ( I-+- 6 t&l- - 
2 ) 

For small 6 

From formulas olstained ir, follows that the deviation of the temperature 
distribution from the one-dimensionai will be noticeable if the thickness 
of the thermal layer exceeds the characteristic length of the change in the 
heat flux at the boundary. 

2. Heating of a wall behind a moving thermal front was considered by 
Tirskii [4] in the steady-state problem (in a moving coordinate system) of 
heating of a half-space behind a moving compression shock by neglectin 
flowing of the heat alon 

7 
the body surface because of heat conduction ~q2&- 

one-dimensional solution . The same problem, not absolutely steady-state, 
is considered below, however, oniy for' a solid without the assumption of 
quasi-one-dimenslonality of the process. It is assumed that the heat flux 
on the surface of the-body is known. 

Let a thermal front move with velocity I/ along the surface of a body, 
the half-space y > 0 , in the positive x direction. At time 1; = 0 the 
front is in the x = 0 plane. Let us assume that the body is separated 
into two quadrants of the space by thermal insulation along the Y = 0 piano. 
Let us determIne the heat propagation process in the x > 0 , E/ > 0 domain. 

In the nondimensional variables introduced in the same manner as iit the 
preceding Sect-ion, the problem is formulated thus 

x= 

ae 
at = 8x2 

E+Z& t == 0, e=o 

a0 
0; 

a(x,t), x<Rt 
z= y=o, ae- *-- o * 1 by- I X>R# 

f2.11 

( v ’ - 
R=kaQ 1 

Let us note that the nondimensionai paXimete1* 8 is analogous to the 
Reynolds number, in boundary layer theory since [h-j = L-1 and [a'] : :':-_i. 

Let us also note that tile :;olution fr,.,m r'l] for a solid is the ::nlut.~till 01 
boundary-layer type in pi,eclscly thio'pax'ametC1'. 
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Let us construct the Green's function of the formulated problem. If the 
solution U(s,y,$; 5) satisfying the initial condition, the heat insulation 
condition a?d the condition at Y = 0 

au --I 
&t 1 

--i, x<E,t>O 
0, s>Ett>O 

is found, then @U/35& yields the influence function of a point heat 
source being evolved at time t = 0 at the point x = 5 ; this means the 
Green's function is representable as 

G (2, y, t; &, r) = *lY {XT I&- T; E) (2.2) 

Let us seek the function Ir(x,g,$; c) as a Fourier cosine integral in x 

TO determine U(s,y,t; 5) we have problem 

au aw 
at -yj$--SW; t-o, rJ=:o; y=o, !&_ 2 sin Es lf Fp 

which can be solved by an operational method. As a result, we obtain 

au 6% Yt G 6) = _ 2 Sings i @ --- 
at v- n s JG 

exp - 4t e-*t 
( f 

Differentiating (2.3) with respect to 5 
[2], we find the Green's function (2.2) 

and using the Poisson Integral 

G(z,Y,t;C,r)=2,(t1_r) exP 
Y" (x + E)' 

-4(t_-) 
I( E 

exp - 4 (t - TJ + I 

- w 
-I- exp [$t - T) II 

Now, on the basis of the principle of addition of effects due to elementa- 
ry perturbations, the solution of problem (2.1) can be written as the integral. 

t Rt 

0 (2, Y, t) = 
ss 

G (2, Y, 2; 4,~) a (E, 7) dEd% (2.5) 
0 0 

Let us use the obtained results to estimate the accuracy of the quasi-one- 
dimensional solution. If, In conformity with [43, a(~,$) is taken as 

then we obtain from the quasi-one-dimensional solution (@8/8xs ~0) that the 
surface temperature behind the shock equals one and ahead of the shock the 
temperature field remains unperturbed. (The presence of a temperature front 
is associated with the fact that the equation degenerates from an elllpt%c 
into a parabolic upon discarding a2C3/&?). Let us now examine what (2.5) 
yields for the surface temperature for a chosen a(x,t) 

(2.7): 



234 E.M. Shakhov 

In order to compare the result with the quasi-one-dimensional solution, 
It is necessary to pass to the limit as t - - in (2.7) and to Investigate 
the behavior of the integral in the neighborhood of n = Rt . Under these 
conditions the first exponential in the integrand of (2.7) may be discarded. 
We then obtain 4 n- 

Let us make an asymptotic estimate of the integral 
ForR s i the triangular domain of Integration on 
slightly from the sector of a circle with center 
this fact into account, let us transform to polar coordinates wlth center 
at the point (At,t). Let 
to the center (Bt,t) and le: 

be the distance from an arbitrary point (5,~) 
Q-/R be the polar angle measured clockwise 

from the line 7 = t . Henceforth, the components of order R-2 and higher 
will be neglected In comparison with unity. With the accuracy used, the 
formulas of the transformation to the new variable of intergration are 

t-,=,-g, Rt-- =r 

As t-m 
for the surfake 

to the accuracy of quantities of order R-‘, we will have 
temaerature 

Jm l co 

eo (h) = -g&- ---%L 
,‘PV1-cpoexP s s [ - (y$ “]A+, h=Iu- z (2.10) 

r 

The Integral (2.10) is evaluated directly. 

Let us Integrate first wlth respect to r . Let us put 

r = 1 h. 1 e+, 
R(kI 

p= 29 
Then, according to [ 51 (p.323), we o-btain 

After Integration with respect to oz we find e,(x) 

RI (a) = 1 (h > O), 0, (h) = erfc vt/--hR /h<Oj 

Hence, as In the quasi-one-dimensional solution, the surface temperature 
behind the shock Is unity. The perturbation zone ahead of the shock has an 
extent of order l/R . 

BIBLIOGRAPHY 

1. Korobkin, I. and Grunewald, K.H., Investigation of local laminar heat 
transfer on a hemisphere for supersonic Mach numbers at low rates of 
heat flux. J.aero.Sci., Vo1.24, NO 3, 1957. Russian transl.in IL,1959. 

2. Tlkhonov, A.N. and Samarskll, A.A., Uravnenlia matematicheskol fizikl 
(Equations of Mathematical Physics). Gostekhteoretlzdat, 1951. 

3. Lykov, A.V., Teorlia teploprovodnosti (Theory of Heat Conduction). 
Gostekhteoretizdat, 1952. 

4. Tlrskll, G.A., Nagrev teploprovodlashchel stenki za dvizhushchlmsia 
skachkom uplotnenlla (Heating of a heat conducting wall behind amoving 
compression shock). Dokl.Akad.Nauk SSSR, ~01.128, NP 6, 1959. 

5. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, rladov 1 
Drolzvedenli (Tables of Integrals, sums, series and products). 
Flzmatglz, 1962. 

Translated by M.D.F. 


